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Abstract. The magnetic ground state of the series of lanthanide and actinide trivalent ions is
investigated by means of spin-polarized relativistic spin-density functional theory. In the local
density functional approximation (LDA) an internal effective magnetic field due to exchange and
correlation couples to the spin degrees of freedom. The resulting set of coupled Dirac equations
yields ground-state multiplets that obey the well-known Hund’s rules. This remarkable result
comes about by the coupling of thej = l+1/2 with thej = l−1/2 states due to the exchange–
correlation potential that is, as usual, the functional derivative of the exchange–correlation energy
with respect to the spin magnetic moment. The effect of the coupling is shown to depend on the
varying relative strengths of spin–orbit coupling and exchange splitting within the f series. Since
in the f levels theinternal exchange splitting dominates rather than the spin–orbit splitting, the
energy level scheme is that of the Paschen–Back effect, and thus features of the Russell–Saunders
coupling persist in spite of relativistic effects.

1. Introduction

Ab initio calculations based on spin-polarized density functional (SPDF) theory [1, 2] have
become a standard tool in the investigation of electronic and magnetic properties of atoms,
molecules and solids including open-shell systems [3]. In the series of the lanthanide
and actinide elements the f electrons and the inner-core electrons are subject to a strong
potential exerted by the nuclei [4]. Therefore a relativistic generalization of the density
functional scheme with respect to the kinetic energy operator and the exchange–correlation
energy was suggested by many authors [5–10] and the spin-polarized theory was completed
by MacDonald and Vosko [6] and by Ramana and Rajagopal [8]. In this spin-polarized
relativistic density functional (SPRDF) theory the Kohn–Sham equation consists of the one-
electron Dirac equation containing an effective scalar potential and an additional effective
magnetic field that is the functional derivative of the exchange–correlation energy with
respect to the spin magnetic moment only. This is an approximation in which orbital
contributions to the magnetic moment are neglected [11]. Since a complete methodology
is currently unavailable this so-called spin-only Dirac theory is believed to be a reasonable
starting point for the description of electronic and magnetic properties of f-electron systems.

In the series of 4f and 5f atoms and ions the occupation of the f shell, or alternatively
the outer d shell, increases with the atomic number while the occupation of the outer s and
p shells remains unchanged [12]. Furthermore the distribution of the f electrons is confined
to the space inside the outer shells; thus, if these atoms are brought together to form

† Permanent address: Graduate School of Science, Physics Department, Tohoku University, Sendai 980-77, Japan.

0953-8984/97/4910881+20$19.50c© 1997 IOP Publishing Ltd 10881



10882 H Yamagami et al

molecules or solids, the f electrons do not directly participate in the chemical bonding. As
a consequence the magnetic properties of f-electron metals are largely given by those of the
corresponding free ions. It is in this spirit that we attempt to investigate the characteristics
of f-electron systems by means of the SPRDF applied to the series of lanthanide and actinide
ions.

In a central-field geometry the Kohn–Sham equation reduces to a radial equation that
here becomes what we call the spin-polarized coupled Dirac (SPCD) equation. This was first
solved in the framework of the Korringa–Kohn–Rostoker (KKR) multiple-scattering method
[13–17] and a first self-consistent band-structure calculation of metallic Pu was performed
using the linear muffin-tin orbital (LMTO) method [18]. Although self-consistent SPRDF
calculations on ions, atoms and atomic cores in solids were also carried out [19, 20], a great
deal of effort was put into the investigation of particular properties of a few isolated cases,
while little attention was devoted to global trends such as energy splitting, wave functions,
spin and orbital magnetic moments and Hund’s rules for the formation of ground-state
multiplets [21].

It is well known that Hund’s rules describe in a nearly perfect manner the experimental
findings for the ground states of the lanthanide ions. On the assumption that spin–orbit
coupling has a rather small impact on moment formation in the 4f shell, theRussell–
Saundersor L–S coupling scheme takes the spin and orbital angular moments to remain
good quantum numbers. Hund’s first and second rule, describing the order of filling of spin
and orbital states for a given number of electrons, were explained by means of Hartree–Fock
multiplet energy differences by Slater [22, 23]. Although the validity of theL–S coupling
scheme seems to imply that the spin–orbit coupling has a negligible effect in the lanthanides,
the 4f electrons are indeed subject to relativistic effects. As is clearly stated by Hund’s third
rule, it is the effect of spin–orbit coupling which completely lifts the remaining degeneracy
of the 4f levels giving rise to distinct energy level splittings.

In this paper we describe self-consistent calculations of spin and orbital moments for
trivalent ions belonging to the lanthanide and actinide series. These calculations are carried
out with the SPCD equation employing the local density approximation (LDA) for the
effective potential. The insertion of spin polarization into the Dirac equation leads to an
infinite set of coupled equations. It was shown by Federet al [13] and Strangeet al
[15] that the dominant terms are accounted for by an approximation where the coupling
betweenj = l + 1/2 andj = l − 1/2 states is retained. We demonstrate that this coupling
effect plays a key role in the formation of the ground-state moments as they are given by
Hund’s rules. Neglecting this coupling leads to the breakdown of Hund’s rules. As will be
seen from the energy splitting scheme later on, the physical situation in the f series, as it
appears in the SPRDF, is subject to the interplay of the LDA exchange potential and the
spin–orbit coupling. The SPCD equation provides the means to investigate the transition
between the two limiting cases of strong exchange field on the one hand and dominating
spin–orbit coupling on the other hand without any initial assumptions about the type of
coupling characterizing a given ground-state multiplet.

The Dirac–Fock equations as they were outlined by [4] handle only pure(jj) coupled
states. The Coulomb repulsion mixes different multiplets having the same total angular
momentum, and therefore the ground state in Dirac–Fock theory has to be described by a
linear combination of these configurations. In SPRDF theory it is the spin-split exchange
potential that mixes initially independent single-particle states of differentj into the ground-
state wave function. It is this mixing as well as the release of any restrictions on the single-
particle wave functions which open the way for the description of the intermediate-coupling
scheme through linear combinations of orbitals of mixedj -character. Although we cannot
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carry out any direct comparison with the Dirac–Fock method we stress the importance of
the mixing of differentjs in the two approaches.

From the viewpoint of perturbation theory the energy levels of the f shell are generally
dominated by the effects ofinternal exchange rather than those of spin–orbit coupling.
In most cases considered, therefore, the nature of the energy splitting is more likely to
be situated in the Paschen–Back regime [24]. This can be regarded as the reason for
the Russell–Saunders coupling scheme holding despite the obvious influence of relativistic
effects.

This paper is organized as follows. In section 2.1 the SPRDF theory is briefly outlined
in the quantum electrodynamics formalism suggested by Rajagopal and Callaway [5] and
the spin-only Dirac equation is derived. In section 2.2 this equation is shown to take the
form of the SPCD equation in the case of a spherically symmetric potential as is typical for
applications in ionic systems. A new algorithm for solving the resulting coupled first-order
differential equation is described. Section 3 contains our results for lanthanide and actinide
trivalent ions which include trends in the energy level splitting scheme as well as the shape
of the radial wave functions and the spin and orbital magnetic moments that are discussed
in the context of Russell–Saunders coupling. Finally section 4 contains our summary and
conclusions.

2. The spin-polarized relativistic Hamiltonian

2.1. Spin-polarized relativistic density functional theory

In order to make this paper reasonably self-contained we briefly repeat the derivation of the
one-electron spin-polarized relativistic equation for a system of interacting electrons in an
external scalar potentialVext (r) and an external magnetic fieldBext (r) (=∇ ×Aext (r)),
as originally outlined by Rajagopal and Callaway [5]. In quantum electrodynamics (QED)
the fully relativistic Hamiltonian,Ĥ , is described in terms of the four-current operator
(n̂(r), Ĵ(r)). The energy of the ground state,|9〉, is written using the field operator̂ψ(r)
as

E = 〈9|Ĥ |9〉 = 〈9|Ĥ0|9〉 +
∫

dr

[
Vext (r)n(r)− e

c
Aext (r) · J(r)

]
(2.1)

wheree andc denote the electron charge and the velocity of light, respectively. The charge
densityn(r) is given by

n(r) = 〈9|n̂(r)|9〉 = 〈9|ψ̂†(r)ψ̂(r)|9〉 (2.2)

while the current densityJ(r) is

J(r) = 〈9|Ĵ(r)|9〉 = 〈9|ψ̂†(r)cβαψ̂(r)|9〉. (2.3)

Here α and β denote the standard Dirac 4× 4 matrices [25] andĤ0 the relativistic
Hamiltonian that is composed of the relativistic kinetic energy, the Coulomb interaction
of the electronic system, the energy of a free radiation field as well as the interaction
between the electron and the transverse radiation field.

The Hohenberg–Kohn theorems [26, 27] were generalized to this formalism and the
following statements were shown by [5, 11] to remain valid: (i) all ground-state properties
are unique functionals of the four-current density; (ii) the ground-state energy is minimized
in the ground-state density; associated with a given external field.
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The Gordon decomposition for the relativistic current [28] singles out the spin moment
and the result is the following expression for the ground-state energy:

E = 〈9|Ĥ0|9〉 +
∫

dr

[
Vext (r)n(r)+Bext (r)ms(r)− e

c
Jorb(r) ·Aext (r)

]
. (2.4)

Here the spin-magnetization density,ms(r), is defined in units ofµB as

ms(r) = 〈9|ψ̂†(r)βσψ̂(r)|9〉 (2.5)

whereσ is the Pauli matrix.Jorb(r) denotes the orbital current that is given by

Jorb(r) = 1

2m
〈9|ψ̂†(r)βp̃ψ̂(r)+ [βp̃ψ̂(r)]†ψ̂(r)|9〉 (2.6)

wherem is the electron mass and̃p denotes̃p = −i h̄∇−eA(r)/c. The quantityA(r) is the
vector potential stemming from the external and transverse part of the radiation field. Since
the ground state under consideration is stationary, the time derivative of the polarization
belonging to the spin gives no contribution to the ground-state energy. It is therefore omitted
in equation (2.4).

In density functional theory the expectation value ofĤ0, 〈9|Ĥ0|9〉, is usually given by

〈9|Ĥ0|9〉 = 〈9|Ĥs |9〉 +
∫

dr
∫

dr′
n(r)n(r′)
|r − r′| + Exc[n(r),ms(r)] (2.7)

whereĤs is the single-particle Dirac Hamiltonian

Ĥs =
∫

dr ψ̂†(r)(cα · p+ (β − I )mc2)ψ̂(r). (2.8)

Here p = −i h̄∇ is the momentum operator andI denotes the 4× 4 unit matrix. The
second term on the right-hand side of equation (2.7) is the Hartree energy while the third
one is the exchange–correlation energy. We would like to stress that in this formalismExc
is assumed to be a functional ofn(r) andms(r) only.

Varying the energy in equation (2.4) with respect to the basis functionsϕi(r) of the
field operatorψ̂(r) under the constraint of particle conservation in theN -electron system∫

dr n(r) = N (2.9)

we obtain the one-electron Dirac equation as follows:[
cα · p+ (β − I )mc2+ V (r)+ βσ ·B(r)− e

4mc2
βp̃ ·Aext (r)− εi

]
ϕi(r) = 0. (2.10)

HereV (r) is the scalar potential,

V (r) = Vext (r)+
∫

dr′
2n(r′)
|r − r′| +

δExc[n(r),ms(r)]

δn(r)
(2.11)

and the magnetic fieldB(r) is

B(r) = Bext (r)+ δExc[n(r),ms ]

δms(r)
= Bext (r)+Bxc(r). (2.12)

Neglecting the fifth term on the left-hand side of equation (2.10) gives the spin-only Dirac
equation as suggested by MacDonald and Vosko [6]. If the external magnetic field vanishes,
i.e.Bext (r) = Aext (r) = 0, equation (2.10) reduces to[

cα · p+ (β − I )mc2+ V (r)+ βσ ·Bxc(r)− εi
]
ϕi(r) = 0. (2.13)

If Exc is defined as a functional ofn(r) andms(r) only, the SPRDF ground state of a
system possessing spontaneous magnetic order is described by the spin-only Dirac equation.
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2.2. Solution for atoms and ions

In order to investigate the magnetic properties of atoms and ions one defines the spin-
quantization axis to be parallel to thez-direction in equation (2.13). Since the external
scalar potential in equation (2.11) will be the spherically symmetric central potential due
to the nucleus, the wave functions can be described by radial and spin-angular functions.
As a basis set to represent spin-angular space in equation (2.11) a spin-angular functionχµκ
[25] constructed from the one-electron Dirac equation without a magnetic field is used. The
spin-dependent potential then gives rise to coupling between states of the sameµ whereµ
denotes thez-component of the total angular momentumj .

If the coupling between states of different orbital angular momentum is neglected, the
infinite set of coupled equations becomes finite. In detail only interactions between two
statesj = `± 1

2 of the samè or, in terms ofκ, κ = +` and−`− 1 [25] are considered.
This approximation was justified by a number of authors [13–15, 19] who showed that the
effect of the neglected terms is of the order of 1/c2. However, we would like to mention
that an investigation of the higher-order coupling was undertaken by Jenkins and Strange
[17], but is not considered in this work. Thus the equations to be solved become (in rydberg
units, where ¯h = 1, m = 1/2, e2 = 2, c = 274.072):[

d

dr
+ κ
r

]
gακ (r)−

[
1+ E

α − V (r)+ B(r)σµ−κ,−κ
c2

]
cf ακ (r) = 0 (2.14a)[

d

dr
− κ
r

]
cf ακ (r)+ [Eα − V (r)− B(r)σµκ,κ ]gακ (r)− B(r)σµκ,−κ−1g

α
−κ−1(r) = 0 (2.14b)[

d

dr
− κ + 1

r

]
gα−κ−1(r)−

[
1+ E

α − V (r)+ B(r)σµκ+1,κ+1

c2

]
cf α−κ−1(r) = 0 (2.14c)[

d

dr
+ κ + 1

r

]
cf α−κ−1(r)+ [Eα − V (r)− B(r)σµκ,κ ]gα−κ−1(r)− B(r)σµ−κ−1,κg

α
κ (r) = 0.

(2.14d)

HereV (r) is the scalar potential as given by equation (2.11) andB(r) is thez-component
of the internal magnetic field due to exchange and correlation. The coefficientsσ

µ

κ,κ ′ in
equation (2.2) denote matrix elements of the Pauli spin matrixσz with the coupling states
{κµ} and{κ ′µ′}. They are given by the following equations:

〈χµκ |σz|χµ
′

κ ′ 〉 = σµκ,κ ′δµµ′ =
−uκµ for κ ′ = κ
−
√

1− u2
κµ for κ ′ = −κ − 1

(2.15)

whereuκµ is

uκµ = µ

κ + 1/2
. (2.16)

The two solutions of the above equation for a given{`µ} with their respective energiesEα

are made up of a linear combination ofpartial statesof κ and−κ − 1.
Forµ = |`+ 1/2| the last terms of equation (2.14b) and equation (2.14d ) become zero

becauseσµκ,−κ−1 = σ
µ

−κ−1,κ = 0. Consequently the resulting solution will be ofpure κ
type forµ = |`+ 1/2|. The effect of the coupling is best appreciated if we compare with
results from completely decoupled equations. Mainly for this purpose we omit the last two
terms for all{`µ} and obtain two independent solutions withα = κ andα = −κ − 1. In
the following we refer to these as solutions of thespin-polarized decoupled Dirac(SPDD)
equation which is also useful for obtaining starting electron densities.
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In the coupled case (except forµ = |`+ 1/2|) the two different solutions labelled byα
are characterized through their bonding and antibonding nature. In order to distinguish the
two different types of solution for the same set of quantum numbers we suggest the use of
the following parameters:

ηα = sgn

[∫ ∞
0

dr (gακ (r)g
α
−κ−1(r)+ f ακ (r)f α−κ−1(r))

]
(2.17)

and

ζα = 1

N

∫ ∞
0

dr (gακ (r)
2+ f ακ (r)2) (2.18)

with the normalization factor

N =
∫ ∞

0
dr (gακ (r)

2+ f ακ (r)2+ gα−κ−1(r)
2+ f α−κ−1(r)

2) (2.19)

where sgn means the sign of the integral. The effect of spin polarization mixes states of
different j or κ. In a numerical solution of the system of ordinary differential equations
(ODE) one has to impose a certainκ character on the boundary condition at the origin.
The system evolves according to the relative strength of spin polarization and spin–orbit
coupling. The resulting admixture ofj ′ or κ ′ type determines the two different solutions.
ζα measures just this admixture in terms of the ratio of the norm of a givenα partial state to
the norm of the total wave functions. The parameterηα is a simple measure for the relative
signs of the partial states forming a given solution. It is 1 for a bonding state and−1 for
an antibonding state.

Next let us turn to the computational method for solving the system of coupled equations
for atoms and ions. Two different algorithms have so far been suggested by Cortonaet al
[19] and Ebert [20]. The principle is to avoid a divergence of the asymptotic wave function
at large distances during an intermediate iterative cycle. The conventional method therefore
is to integrate the radial equations outward and inward and to match the solutions at the
classical turning point. The correct energy is determined by this matching. Ebert [20]
utilized the matching condition in an application of the Newton–Raphson method. In his
algorithm, two outward solutions and two inward solutions are relaxed to fit the matching
conditions through iterative cycles.

We suggest a new algorithm to adapt Liberman’s program of self-consistent relativistic
atomic calculations [29] directly for the spin-polarized relativistic program. Here one
inward integration is used. At large distances from the origin the four radial functions
are characterized by an exponential form such as [19, 20]

gκ(r) = pκ exp[−γ r] cfκ(r) = pκβ exp[−γ r]
g−κ−1(r) = p−κ−1 exp[−γ r] cf−κ−1(r) = p−κ−1β exp[−γ r] (2.20)

with two common factors

γ =
√
−Eα − (Eα/c)2 and β = −(1+ Eα/c2)/γ.

At infinity (B(∞) = 0) the two partial radial functions corresponding to states with
κ and −κ − 1 are controlled independently by the parameterspκ and p−κ−1. They
give the starting values for the inward integration. For the outward integration we
prepare two solutions corresponding to two different combinations in a series expansion
[13, 15, 20], which are orthogonalized in the leading term. Each of them includes an
independent constant and in our classification a constantq1 gives a higher-weightingκ
partial function whileq2 supplies the dominant−κ − 1 partial function. From the above-
mentioned starting values for inward and outward integration the coupled equations can
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be solved straightforwardly using a generalization indicated by Loucks [30]. In detail
the radial function at the first six grid points is determined from the starting value using
the Runge–Kutta method. Further integration up to the classical turning point is then
performed by means of a predictor–corrector scheme such as the Milne method. In
the following we denote the outward solution obtained fromq1 and q2 respectively by
(gout :1κ (r), f out :1κ (r), gout :1−κ−1(r), f

out :1
−κ−1(r)) and (gout :2κ (r), f out :2κ (r), gout :2−κ−1(r), f

out :2
−κ−1(r)). For

the inward solution we use(ginκ (r), f
in
κ (r), g

in
−κ−1(r), f

in
−κ−1(r)).

Next a linear combination of the two partial outward solutions is formed and matched
with the inward part:

gout :1κ (rm)+ Agout :2κ (rm)

f out :1κ (rm)+ Af out :2κ (rm)

gout :1−κ−1(rm)+ Agout :2−κ−1(rm)

f out :1−κ−1(rm)+ Af out :2−κ−1(rm)

 match⇐⇒


Bginκ (rm)

Bf inκ (rm)

Cgin−κ−1(rm)

Cf in−κ−1(rm)

 . (2.21)

These four matching conditions can be achieved by an adjustment of the three coefficients
(A,B,C) and the energyEα. An effective trial value ofA, B andC can be formulated
analytically: using the connection between the inward and outward solution in the last two
equations of equation (2.21) we obtain the followingA andC:

A = gout :1−κ−1(rm)f
in
−κ−1(rm)− gin−κ−1(rm)f

out :1
−κ−1(rm)

gin−κ−1(rm)f
out :2
−κ−1(rm)− gout :2−κ−1(rm)f

in
−κ−1(rm)

(2.22)

C = gout :1−κ−1(rm)f
out :2
−κ−1(rm)− gout :2−κ−1(rm)f

out :1
−κ−1(rm)

gin−κ−1(rm)f
out :2
−κ−1(rm)− gout :2−κ−1(rm)f

in
−κ−1(rm)

. (2.23)

From the first line of equation (2.21) an expression forB is given by means of the above-
estimatedA:

B = gout :1κ (rm)+ Agout :2κ (rm)

ginκ (rm)
. (2.24)

Finally the difference between the inward and outward solution in the second line of equation
(2.21) is used for the energy correction. The expression for the relativistic energy correction
as outlined by [31, 32] can easily be generalized to the spin-polarized case. The improved
trial correction forEα is then derived as

1E = cBginκ (rm)(f
out :1
κ (rm)+ Af out :2κ (rm)− Bf inκ (rm))

N
(2.25)

whereN is the normalization factor defined in equation (2.19).
Within the iterative cycle for the energy eigenvalue, the trial coefficientspκ, p−κ−1, q1

andq2 for the next iteration are then given by the following replacements:

Bpκ√
N
−→ pκ

Bp−κ−1√
N
−→ p−κ−1

q1√
N
−→ q1

Aq2√
N
−→ q2. (2.26)

The new trial energyEα is

Eα +1E −→ Eα. (2.27)

The procedure for calculating the two different solutions for given values of` andµ is
similar to the scheme determining the correct number of nodes in Liberman’s programme.
Seeking bonding and antibonding states, the trial energies are shifted downward and upward
respectively until the corresponding values ofηα are achieved.
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When the correctηα is attained the energy is further refined according to equation
(2.27). The convergence criterion for the wave functions and their energies is thatA, B
andC become unity while1E becomes smaller than some tolerance (<10−6).

Once the eigenvalue and wave functions for a given potential are determined, the charge
densitiesn(r) and the magnetization densitiesms(r) are constructed as

n(r) =
∑
n`µα

Wα
n`µ(g

nµ;α
` (r)2+ f nµ;α` (r)2+ gnµ;α−`−1(r)

2+ f nµ;α−`−1(r)
2) (2.28)

and

ms(r) =
∑
n`µα

Wα
n`µ(g

nµ;α
` (r)2σ

µ

`,` − f µ;α` (r)2σ
µ

−`,−` + gnµ;α−`−1(r)
2σ

µ

−`−1,−`−1

− f nµ;α−`−1(r)
2σ

µ

`+1,`+1+ 2gnµ;α` (r)g
nµ;α
−`−1(r)σ

µ

`,−`−1). (2.29)

Each of the expressions above is derived by projectingn(r), equation (2.2), and thez-
component ofms(r), equation (2.5), onto the radial part. HereWα

n`µ (=1 or 0) denotes a
weight factor for the{n`µα} state which is determined from the constraint that the sum of
one-electron energies be minimized for the given number of electrons:∑

n`µα

Wα
n`µE

α
n`µ = min (2.30)

and ∑
n`µα

Wα
n`µ = Z −Nion (2.31)

whereNion is the ionic charge.
As for the self-consistent determination of the effective potential, we adopt Liberman’s

algorithm [29]. The starting values for the energy of a given{n`µα} state as well as
the starting charge and magnetization densities are obtained from a self-consistent solution
of the SPDD equation. The relativistic corrections to the exchange–correlation [9, 10]
potential are proportional toc−2 and r−3

s where rs is defined in terms of the density
as 4πr3

s a
3
0/3 = 1/n and a0 is the Bohr radius. In practical calculations the relativistic

corrections to the exchange–correlation potential are negligibly small; thus for our purposes
the von Barth and Hedin expression for the exchange–correlation potential was used [1].

3. Lanthanide and actinide ions

3.1. The energy level and the radial wave function

The solutions of equation (2.2) are a set of non-degenerate orbitals(nlµ) that are split in
a Zeeman-like manner. The initial degeneracy with respect to thez-component of the total
angular momentumµ is lifted by the introduction of spin polarization that results in an
internal magnetic field. In tables 1 and 2 the calculated results for the energiesηα and ζα
are collected for lanthanide and actinide ions respectively. As we would like to concentrate
on trends in the energy splitting for each series, we have chosen three representative ions:
these are58Ce3+, 60Nd3+ and 62Sm3+ for the lanthanides and90Th3+, 92U3+ and 94Pu3+

for the actinides. Generally the energies are divided into two groups according to their
respective magnitudes. These groups can be characterized by their corresponding bonding
parameterηα as each of them is made up of a distinct combination of partial wave functions
of κ and−κ − 1 type. Clearly the states defined to be bonding are lower in energy. For
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Table 1. 4f-level energies,ηα and ζα , for 58Ce3+, 60Nd3+ and 62Sm3+ in the self-consistent
SPCD calculation.

58Ce3+ 60Nd3+ 62Sm3+

µ Energy ηα ζα Energy ηα ζα Energy ηα ζα

5/2 −1.1231 1 0.938−1.2224 1 0.902−1.2873 1 0.893
3/2 −1.1203 1 0.868−1.2202 1 0.796−1.2908 1 0.778
1/2 −1.1204 1 0.789−1.2181 1 0.678−1.2941 1 0.653
−1/2 −1.1189 1 0.693−1.2157 1 0.546−1.2972 1 0.516
−3/2 −1.1170 1 0.571−1.2131 1 0.395−1.3002 1 0.365
−5/2 −1.1148 1 0.391−1.2104 1 0.217−1.3031 1 0.194
−7/2 −1.1117 0 0.000−1.2073 0 0.000−1.2836 0 0.000

−5/2 −1.0987 −1 0.609 −1.1494 −1 0.783 −1.1768 −1 0.806
−3/2 −1.0965 −1 0.429 −1.1467 −1 0.605 −1.1734 −1 0.635
−1/2 −1.0947 −1 0.307 −1.1442 −1 0.454 −1.1702 −1 0.486

1/2 −1.0931 −1 0.211 −1.1418 −1 0.322 −1.1671 −1 0.347
3/2 −1.0917 −1 0.132 −1.1396 −1 0.204 −1.1642 −1 0.222
5/2 −1.0904 −1 0.062 −1.1375 −1 0.098 −1.1616 −1 0.107
7/2 −1.0892 0 0.000−1.1355 0 0.000−1.1589 0 0.000

Table 2. 5f-level energies,ηα and ζα , for 90Th3+, 92U3+ and 94Pu3+ in the self-consistent
SPCD calculation.

90Th3+ 92U3+ 94Pu3+

µ Energy ηα ζα Energy ηα ζα Energy ηα ζα

5/2 −1.7932 1 0.977−2.0425 1 0.945−2.2665 1 0.932
3/2 −1.7903 1 0.953−2.0362 1 0.884−2.2576 1 0.855
1/2 −1.7869 1 0.930−2.0296 1 0.813−2.2478 1 0.768
−1/2 −1.7833 1 0.906−2.0219 1 0.729−2.2372 1 0.663
−3/2 −1.7791 1 0.885−2.0130 1 0.621−2.2250 1 0.531
−5/2 −1.7738 1 0.878−2.0018 1 0.457−2.2105 1 0.344
−7/2 −1.7499 0 0.000−1.9844 0 0.000−2.1915 0 0.000

−5/2 −1.7418 −1 0.122 −1.9336 −1 0.543 −2.0851 −1 0.656
−3/2 −1.7365 −1 0.115 −1.9226 −1 0.379 −2.0709 −1 0.469
−1/2 −1.7324 −1 0.094 −1.9138 −1 0.271 −2.0590 −1 0.337

1/2 −1.7288 −1 0.070 −1.9062 −1 0.187 −2.0485 −1 0.232
3/2 −1.7256 −1 0.047 −1.8995 −1 0.116 −2.0390 −1 0.145
5/2 −1.7230 −1 0.023 −1.8935 −1 0.055 −2.0303 −1 0.068
7/2 −1.7203 0 0.000−1.8879 0 0.000−2.0222 0 0.000

µ = ±7/2 the equations are uncoupled becauseσ
µ

κ,κ ′ = 0. In this case,ηα = 0 denotes the
uncoupled state.

Another interesting feature is the ratio of mixing of the two different types ofκ or j .
This ratio is represented by the parameterζα. It measures the ratio of the(j = 5/2)-like
partial state and the total radial wave functions. We may take the uncoupled case as an
example; when the matrix elementσµκ,κ ′ disappears (as is the case forµ = ±7/2, κ = 3)
the resulting radial wave function will be composed of thej = 7/2 partial state only. Since
there is no coupling to thej = 5/2 state we haveζα = 0. Tables 1 and 2 show that
the sum ofζα for equalµs is unity, except for the case ofµ = ±7/2 where there is no
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j = 5/2 contribution. The ratio between the partial states is determined automatically in the
self-consistent process. In the upper part of tables 1 and 2 we notice that for a given ion the
mixing factor decreases fromµ = 5/2 toµ = −5/2. This corresponds to stronger coupling
and therefore enhanced admixture ofj = 7/2 to the solution. While this feature can be
accounted for at least qualitatively by the simple dependence onµ of σµκ,κ ′ , the coupling
strength mainly depends on the spin polarization of the f shell. Therefore the change ofζα
for a given ion will be most pronounced for Gd3+ and Pu3+ where we encounter a half-filled
shell and thus a maximum spin moment.
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Figure 1. 4f radial wave functions of theµ = 5/2 state in64Gd3+ according to the self-
consistent SPCD equation. The bonding and antibonding states, each of which corresponds
to a different combination betweenj = 5/2 and 7/2 partial states, are given in (a) and (b)
respectively. The solid lines denote the partial wave function of thej = 5/2 state and the
broken lines denote that of thej = 7/2 state.

In figure 1 the 4f radial wave function of Gd3+ is shown forµ = 5/2. The bonding
state is plotted in (a) while (b) represents the antibonding solution. Solid lines denote the
j = 5/2 partial radial wave functions, while the broken lines denote thej = 7/2 functions.
Clearly in the bonding state the two large componentsgκ(r) andg−κ−1(r) of equation (2.2)
have the same sign while the antibonding solutions are formed by components of opposite
sign. The relative size of the amplitudes of the partial waves correspond to the value of
ζα in table 2. In figure 2 the 4f and 5f energy levels of the lanthanide and actinide series
calculated using the SPCD equation are depicted. As a common feature to both series, the
first and last elements show two energy levels with degeneracy six and eight. Since the f
shell in these cases is either filled or empty there is no internal field due to spin splitting
and thus it is the spin–orbit interaction that causes the splitting.

Moving away from these elements toward the middle of the series corresponds to filling
or emptying the f shell and thus creating an internal field. As a consequence the levels
are split. While the spectrum to the left is characterized by a splitting into two groups
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Figure 2. f-level energies for the trivalent ions of the lanthanides and actinides obtained from
the self-consistent SPCD calculation.

composed of seven states there is a transition from a ‘seven and seven’ to a ‘six and eight’
configuration for the heavier elements. This trend is more pronounced in the group of the
actinides than in the lanthanides. The reason for this can be seen in the relative strength
of the spin splitting and spin–orbit coupling. For the lanthanides the effect of spin–orbit
coupling on the splitting scheme is less pronounced. Only for the late ions from Er3+ to
Yb3+ is there a clear tendency towards what we call the ‘relativistic regime’. Most of
the ionic levels are governed by the ‘exchange regime’. In the actinides the transition in
between these two regimes sets in earlier. The enhanced influence of spin–orbit coupling
can already be seen from Bk3+ on.

In order to clarify the dependence of the level structure on the effects of spin and spin–
orbit splitting we calculated the energies of the 5f and 6p shell for the uranium atom using
five different approximations, namely the normal Dirac equation without a magnetic field
(Dirac), the SPDD (decoupled), the SPCD equation (coupled), the spin-polarized scalar
relativistic equation (SP-scalar), and the scalar relativistic equation without a magnetic
field (scalar). The exchange–correlation potential used was the same in all cases. The
scalar relativistic method has been suggested by several authors [33–36] utilizing different
averaging processes for the relativistic statesj = ` ± 1/2. Here we use an expression for
the scalar relativistic method derived by Koelling and Harmon [34].

The calculated results for the 5f- and 6p-level energies are shown in figures 3(a) and
3(b) respectively. The sequence of the energies corresponds to theµ-states as shown in
table 2. In the Dirac case there are two degenerate levels, whose difference in energy
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Figure 3. 5f- and 6p-level energies of the U atom in various approximations. The label ‘Dirac’
represents the normal Dirac equation without the magnetic field, ‘Decoupled’ represents the
SPDD equation, ‘Coupled’ the SPCD equation, ‘SP-Scalar’ the spin-polarized scalar relativistic
equation, and ‘Scalar’ the scalar relativistic equation without a magnetic field. The calculated
results for the 5f state are shown in (a) and those for the 6p states in (b).

corresponds to the strength of the spin–orbit interaction, denoted by1rel . On the right-
hand side of figure 3 we have the results obtained using the scalar equation. Since there is
no spin–orbit splitting in the scalar relativistic approximation, this state is fully degenerate.
The inclusion of spin polarization leads to two levels just like in the Dirac case on the
left. Nevertheless the SP-scalar levels are of a different nature as they are produced by
the exchange interaction, referred to as1ex . As compared with the SP-scalar case the
difference in energy between the levelsµ = ±7/2 in the coupled case can be interpreted
as the magnitude of1ex . In the decoupled case the two Dirac levels are split due to spin
polarization. The resulting energy levels are equidistant, very much like in an independent
normal Zeeman splitting of the two initially degeneratej = 5/2 and 7/2 states. Turning
to the solutions of the coupled equations we encounter the two groups already mentioned,
but the anisotropy splitting depends onµ as would be expected for the anomalous Zeeman
effect.

Comparing the energy splitting calculated for the U 5f states with that of the 6p states
we note an interesting structural difference. While the results of the coupled equation clearly
split the 5f levels into two groups each containing seven states the 6p states are split into
groups of four and two. This type of splitting is characteristic for cases where spin–orbit
splitting is much stronger than spin polarization. The SPCD equations yields both of these
coupling types, i.e. therelativistic regimewhere1rel is dominant as well as theexchange
regimewhere1rel � 1ex . The influence of these competing effects on the f-level splitting
in the lanthanide and actinide series can be seen in figure 2. The relative magnitudes of1rel
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Figure 4. The spin–orbit and exchange splitting parameters of the f state in the trivalent ions
of the lanthanides and actinides. The circles and squares represent the calculated values of the
spin–orbit and exchange splitting respectively.

and1ex for f and p shells are compared in figure 4 and figure 5 respectively. The magnitude
of 1ex in the lanthanide 4f shell is larger than that of the actinide 5f shell. The reason for
this can be seen in a stronger degree of localization of the 4f wave function compared with
the 5f function. Obviously spin–orbit splitting increases with atomic number, its magnitude
for a given ion depending on the potential. Spin polarization on the other hand is due to
the filling of the f shell.

As can be seen in figure 5 the p shells in both the lanthanide and the actinide series are
clearly situated in the relativistic regime. For the f shells the situation is somewhat more
complicated; depending on the occupation number we encounter all three possibilities, the
exchange regime, an intermediate-coupling regime as well as the relativistic regime. The
discussion of the 4f and 5f energy splitting scheme (figure 2) above already reflected these
trends.

Dealing with localized f-electron systems, the question of the degree of localization,
as produced by a given calculational scheme, naturally arises. It is well known that
simple LSDA alone does not yield a sufficiently precise description of localized systems,
as by construction its exchange energy contains self-interaction contributions which gain
substantial influence [41, 42] in strongly localized 4f systems. While this work mainly
concentrates on the description of the structure and formation of ground-state properties
like energy level splittings and wave functions, we would like to add some data allowing
for a comparison of the relative position of the energy levels with respect to experiment
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Figure 5. The spin–orbit and exchange splitting parameters of the outer p state in the trivalent
ions of the lanthanides and actinides. The circles and squares represent the calculated values of
the spin–orbit and exchange splitting respectively.

and other theoretical work. For this purpose we show in tables 5–7 our results for the
negative value of the highest occupied molecular orbitals (HOMO) for the atoms and ions
of the first half of the lanthanide series. The theoretical data taken from Forstreuteret al
was [42] produced using a Slater-type orbital expansion to solve for the eigenstates of the
spin-polarized Dirac Hamiltonian. In addition to these calculations (RLSDA in tables 5–7)
the authors of [42] employed an orbital-dependent potential in order to account for the
self-interaction correction (SIC). The experimental data were taken from reference [43].
Generally our results compare well with the RLSDA data. With the exception of that for Pr
the HOMOs lie around the RLSDA values or slightly lower. In addition to the eigenvalues,
the l-character of the highest-lying occupied states is given in brackets with the eigenvalues
in tables 5–7. In most cases the RLSDA+ SIC calculations lower the eigenvalues by a
considerable amount, hence indicating stronger localized orbitals. For a detailed discussion
of the effects of employing the SIC, the reader is referred to reference [42].

3.2. Magnetic properties

Let us consider the magnetic properties of the lanthanides and actinides using the SPCD
equation of equation (2.2). The ground states of the lanthanides are given by Hund’s rules
which are described in terms of the Russell–Saunders coupling [12, 37]. The representation
of the ground state is given by the total orbital momentumL and spin momentumS. In
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Table 3. The ground state of the lanthanide trivalent ions in the SPCD and SPDD equation.
4f n means the occupation number of the 4f shell. The symbol(2S+1)LJ is specified by the
lowest multiplet of the Hund’s rule. The values ofg in the parentheses show an estimate from
(2S+1)LJ .

SPCD equation SPDD equation

4f n (2S+1)LJ L S J g L S J g

57La3+ 0 1S0 0.00 0.00 0.0 0.00 (0.00) 0.00 0.00 0.0 0.0
58Ce3+ 1 2F5/2 2.98 0.48 2.5 0.86 (0.86) 2.86 0.36 2.5 0.9
59Pr3+ 2 3H4 4.97 0.97 4.0 0.81 (0.80) 4.57 0.57 4.0 0.9
60Nd3+ 3 4I9/2 5.97 1.47 4.5 0.73 (0.73) 5.14 0.64 4.5 0.9
61Pm3+ 4 5I4 5.97 1.97 4.0 0.61 (0.60) 4.57 0.57 4.0 0.9
62Sm3+ 5 6H5/2 4.97 2.47 2.5 0.29 (0.29) 2.86 0.36 2.5 0.9
63Eu3+ 6 7F0 2.97 2.97 0.0 0.00 (0.00) 0.00 0.00 0.0 0.0
64Gd3+ 7 8S7/2 0.03 3.47 3.5 2.00 (2.00) 3.00 0.50 3.5 1.1
65Tb3+ 8 7F6 3.04 2.96 6.0 1.50 (1.50) 5.14 0.86 6.0 1.1
66Dy3+ 9 6H15/2 5.04 2.45 7.5 1.33 (1.33) 6.42 1.07 7.5 1.1
67Ho3+ 10 5I8 6.05 1.94 8.0 1.24 (1.25) 6.85 1.14 8.0 1.1
68Er3+ 11 4I15/2 6.05 1.45 7.5 1.19 (1.20) 6.42 1.07 7.5 1.1
69Tm3+ 12 3H6 5.02 0.97 6.0 1.16 (1.17) 5.14 0.86 6.0 1.1
70Yb3+ 13 2F7/2 3.00 0.50 3.5 1.14 (1.14) 3.00 0.50 3.5 1.1
71Lu3+ 14 1S0 0.00 0.00 0.0 0.00 (0.00) 0.00 0.00 0.0 0.0

Table 4. The ground state of the actinide trivalent ions in the SPCD equation. 5fn represents
the occupation number of the 5f shell. The symbol(2S+1)LJ is specified by the lowest multiplet
of the Hund’s rule. The values ofg in the parentheses denote an estimate from(2S+1)LJ .

5f n (2S+1)LJ L S J g

90Th3+ 1 2F5/2 2.95 0.45 2.5 0.87 (0.86)
91Pa3+ 2 3H4 4.90 0.90 4.0 0.82 (0.80)
92U3+ 3 4I9/2 5.86 1.36 4.5 0.75 (0.73)
93Np3+ 4 5I4 5.82 1.82 4.0 0.64 (0.60)
94Pu3+ 5 6H5/2 4.79 2.29 2.5 0.34 (0.29)
95Am3+ 6 7F0 2.78 2.78 0.0 0.00 (0.00)
96Cm3+ 7 8S7/2 0.19 3.31 3.5 1.94 (2.00)
97Bk3+ 8 7F6 3.25 2.75 6.0 1.46 (2.00)
98Cf3+ 9 6H15/2 5.27 2.23 7.5 1.30 (1.33)
99Es3+ 10 5I8 6.23 1.76 8.0 1.21 (1.25)
100Fm3+ 11 4I15/2 6.16 1.34 7.5 1.17 (1.20)
101Md3+ 12 3H6 5.07 0.93 6.0 1.15 (1.17)
102No3+ 13 2F7/2 3.00 0.50 3.5 1.14 (1.14)
103Lw3+ 14 1S0 0.00 0.00 0.0 0.00 (0.00)

the SPCD scheme,L andS respectively are defined as

L =
∣∣∣∣∫ dr 〈9|ψ̂†(r)β ˆ̀ψ̂(r)|9〉

∣∣∣∣ = ∣∣∣∣∫ ∞
0

dr m`(r)

∣∣∣∣ (3.1)

and

S = 1

2

∣∣∣∣∫ ∞
0

dr ms(r)

∣∣∣∣ (3.2)
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Table 5. Comparison of theoretical values of the negative HOMO and experiment values for
the ionization potentials IP1 of free atoms in eV. ‘RLSDA’ indicates spin-polarized relativistic
density functional calculations employing a Slater-type orbital expansion.

58Ce 59Pr 60Nd 61Pm 62Sm 63Eu 64Gd

HOMO SPCD (present) 4.4 (d) 3.0 (f ) 3.7 (f ) 4.2 (f ) 4.6 (s) 4.7 (s) 4.2 (d)
HOMO RLSDA [42] 3.8 3.8 3.8 3.8 3.8 3.9 4.2
HOMO RLSDA SIC [42] 5.3 5.0 5.1 5.1 5.2 5.2 5.7
(Experiment) [43] 5.5 5.4 5.5 5.6 5.6 5.7 6.1

Table 6. Comparison of theoretical values of the negative HOMO and experiment values for
the ionization potentials IP1 of free R+ ions in eV.

58Ce 59Pr 60Nd 61Pm 62Sm 63Eu 64Gd

HOMO SPCD (present) 9.4 (d) 8.9 (f ) 9.7 (f ) 10.3 (f ) 10.9 (f ) 11.1 (s) 10.6 (d)
HOMO RLSDA [42] 8.2 9.1 9.2 9.3 9.5 9.6 10.5
HOMO RLSDA SIC [42] 10.8 10.4 10.6 10.7 10.9 11.0 12.1
(Experiment) [43] 10.9 10.6 10.7 10.9 11.1 11.2 12.1

Table 7. Comparison of theoretical values of the negative HOMO and experiment values for
the ionization potentials IP1 of free R2+ ions in eV.

58Ce 59Pr 60Nd 61Pm 62Sm 63Eu 64Gd

HOMO SPCD (present) 15.1 (f ) 16.2 (f ) 17.0 (f ) 17.8 (f ) 18.4 (f ) 18.9 (f ) 17.9 (d)
HOMO RLSDA [42] 14.1 15.2 16.0 16.8 17.4 17.9 16.4
HOMO RLSDA SIC [42] 22.0 23.4 24.7 25.8 26.7 27.7 19.5
(Experiment) [43] 20.2 21.6 22.1 22.3 23.4 24.9 20.6

wherems(r) indicates the spin-magnetization density as in equation (2.29).m`(r) is defined
by the radial wave functions obtained from the self-consistent calculation:

m`(r) =
∑
n`να

Wα
n`µ(g

nµ;α
` (r)2`

µ

`,` − f µ;α` (r)2`
µ

−`,−` + gnµ;α−`−1(r)
2`
µ

−`−1,−`−1

− f nµ;α−`−1(r)
2`
µ

`+1,`+1+ 2gnµ;α` (r)g
nµ;α
−`−1(r)`

µ

`,−`−1). (3.3)

Here the matrix̀ µ

κ,κ ′ stands for

〈χµκ | ˆ̀z|χµ
′

κ ′ 〉 = `µκκ ′δµµ′ =

(κ + 1)uκµ for κ ′ = κ
1

2

√
1− u2

κµ for κ ′ = −κ − 1
(3.4)

whereuκµ is defined in equation (2.16). Using the definitions ofL, equation (3.1), andS,
equation (3.2), we obtain the total angular momentumJ as

J =
∣∣∣∣∫ ∞

0
dr

(
m`(r)+ ms(r)

2

)∣∣∣∣ . (3.5)

In table 3 we give the calculated values ofL, S andJ for the lanthanide trivalent ions.
The lowest-lyingJ -multiplet is denoted in the usual way as(2S+1)LJ . We understand that
the values forL, S andJ calculated from the SPCD equation are in very good agreement
with Hund’s rules. Accordingly we can say that the ground state of the SPCD equation
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produces the Hund’s rule for the lanthanides. The observable magnetic values—for example,
the effective Bohr magneton number,p = g√J (J + 1) [38]—contain theg-factor andJ .
This g-factor is what is called the Landé factor. Table 3 also shows theg-values evaluated
by the SPCD equation together with those of Hund’s rules in parentheses. These values
are almost equal and therefore the calculated magnetic values agree quite well with those
obtained from Hund’s rules. In table 3 another notable point is that the moments calculated
using the decoupled scheme SPDD deviate from the values expected on the basis of Hund’s
rules. The deviation ofS andL is complementary in such a way that the value ofJ is
conserved for each ion. Although it is impossible to evaluate theg-value of La3+, Eu3+

and Lu3+ for J = 0, the otherg-values estimated from the SPDD equation are nearly
constant around 1 and thus we can confirm that the value ofS comes out like in a normal
Zeeman effect. The reason for this is the poor outcome of the spin moment through the
self-consistent process, as in the decoupled calculation we restrict the system to a certain
value ofj . From the different properties of the SPCD and SPDD equations we see that it
is the coupling ofj = ` ± 1/2 states that gives rise to the anomalous Zeeman effect and
therefore plays an essential part in the moment formation according to Hund’s rules.

Next let us move to the actinide trivalent ions. In table 4 the values ofL, S and
J calculated from the SPCD equation for the series of actinide ions are shown together
with the correspondingg-factors. The ground-state momentsL, S andJ are characterized
according to Hund’s rules, although their values seem to deviate slightly compared with
the lanthanides of table 3. The same is true for the estimatedg-values given in table 3
which are listed in parentheses. However, on the whole we may propose that the magnetic
properties of the actinide ions are reasonably well described by Hund’s rules.
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Figure 6. The dependence of the exchange potential on the orbital angular and spin momenta
for Bk3+. The parameterα denotes the Slater Xα exchange parameter.

From figure 4 it can be seen that this tendency depends on the relative strength of
spin–orbit coupling and spin splitting through the series of 5f ions. In order to reveal
the dependence ofS andL on the exchange potential we made the following numerical
experiment. For Bk3+ for which the ground-state spin and orbital moment deviation from
Hund’s rule is strongest, we performed trial calculations employing Slater’s Xα exchange
potential [39] with varying magnitude ofα. The omission of the correlation part of the
potential for the duration of these test calculations has no influence on the moment formation.
The results are shown in figure 6. Here Slater’s exchange potential forα = 3/2 corresponds
to the LDA limit. Whenα increases above the LDA value each ofL and S approaches
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the value of 3 as is expected from Hund’s rules. With decreasingα, S goes to zero while
L approaches 6 as the totalJ is stable and equal to 6. We can therefore conclude that the
magnitude ofS andL depends entirely on the strength of the exchange potential.

It is well known that the Hamiltonian of equation (2.13) does not commute withS and
L but only with the total angular momentumJ . However, judging from our calculations,
L andS seem to be good quantum numbers, as long as the Russell–Saunders coupling is
valid for the case in question. A key role in these systems is played by1rel and1ex .
As mentioned in section 3.1 almost all ions of the lanthanides and actinides belong to
the exchange regime, as their internal magnetic field dominates spin–orbit splitting. Thus
in a first approximation the spin–orbit interaction can be neglected and consequently the
projections of the orbital angular momentum and spin on thez-axis are conserved. Under
the influence of a strong magnetic field the level splitting is known to be described by
the orbital angular momentum and spin rather than the total angular momentum and the
Land́e factor [40]. This phenomenon is called the Paschen–Back effect [24]. We therefore
argue that the relative size of1rel and1ex due to the interplay of spin–orbit coupling and
the internal magnetic field leads to a situation where the Russell–Saunders coupling holds
despite the obvious importance of relativistic effects for these f-electron systems.

4. Summary and discussion

On the basis of the SPRDF the magnetic properties of the lanthanide and actinide trivalent
ions have been investigated by means of a detailed description of their energy level scheme
and ground-state wave functions using the spin-only Dirac formalism within SPRDF theory.
Since the relativistic corrections to the exchange–correlation potential are small they were
neglected for our purposes. In the case of spherical boundary conditions, such as apply to
atoms and ions, the SPRDF produces the SPCD equations. The mixing of statesj = `±1/2
is a characteristic feature of the SPCD equation and turns out to lie at the heart of the physical
trends observed in the 4f and the 5f series. It is indeed the origin of the anomalous Zeeman
effect which dominates the energy scheme for lanthanide and actinide ions.

The values ofL, S and J obtained from our self-consistent SPCD calculations
demonstrate the validity of Hund’s rules for all trivalent ions of these series. The magnitude
of S is governed by the strength of the exchange potential whileL changes as a function
of S. J is a conserved quantity. This suggests that the exchange potential of the LDA is
capable of yieldingS in agreement with Hund’s rules for f-electron systems. We have shown
that despite the large relativistic effects in 4f and 5f systems their ground-state properties are
mainly governed by the exchange interaction. HenceS andL can be regarded as remaining
good quantum numbers, and the magnetic properties of these systems are well described
using the Russell–Saunders coupling scheme.

In a non-relativistic scheme, Hund’s rules are established by means of configuration
effects in Hartree–Fock theory [22]. Their origin can be seen in the exchange described
by the Fock term involving different orbitals. The non-local potential originating from this
term yields an orbital dependence of the energy, and the minimum Hartree–Fock energy can
be related to the values ofL andS according to Hund’s rules. In the SPRDF scheme the
origin of the magnetic field is also the electron exchange and correlation, but the anisotropic
orbital dependence which is important for Hund’s rules stems from relativistic effects.
Although both schemes are capable of explaining Hund’s rules we would like to stress
that the underlying reasons for this are quite different. Since the one-particle equation
in the SPRDF—here the SPCD equation—is formulated in a local form, the corresponding
electronic configuration can be determined by simply minimizing the sum of the one-electron
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levels. The self-consistent calculation then produces a ground state as predicted by Hund’s
rule.

Finally we would like to comment on an approximate treatment of the SPCD equations
for solids. For conduction bands which might under certain circumstances include f bands
in the lanthanides and actinides, we know that exchange effects dominate over the effects
of spin–orbit coupling. Therefore we can expect a scalar relativistic approach treating spin–
orbit interaction at the variational level to provide reliable results. However, since all core
electrons belong to the relativistic regime, the Dirac equation rather than the spin-polarized
scalar relativistic (SPSR) equation should be employed when solving for energies and wave
functions. The failures of the SPSR equation for the 6p state of Pd have already been pointed
out by MacDonald, Pickett and Koelling [36]. The importance of the SPCD equation for
the description of these states is also strongly suggested by our results.
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